OpenDedup

Cloud Storage Gateway for Netbackup

Integration Points

What Gaps Does OpenDedupe Fill

- Dedupe To the Cloud from
 - Enterprise Vault
 - NetBackup
 - BackupExec
- Dedupe To Our Solutions
 - NetBackup Appliance as Cloud Storage Gateway
 - InfoScale Access as Storage Target
- Solve Specific Challenges
 - Global Deduplication across domains
 - Workloads that do not dedupe well with MSDP
 - DB Dumps
 - Vaulted NDMP Dumps
 - Any workloads that dedupe well with Data Domain and Don't with MSDP

OST Integration

Today:

- Accelerator All forms
- Global Dedupe across media servers/domains
- Optimized Duplication (In Qualification)
- Replication (In Qualification)
- AIR (In Qualification)

ECS Architecture

NetBackup Appliance Architecture

NetBackup Appliance Architecture

EV Architecture

What is OpenDedupe

A storage gateway to scale out storage

- Scale out block
- Object storage Cloud Storage
- Hybrid

What is it used for?

- Local Block or Cloud Object
- Backup Target
- Archive Target
- VM Storage
- SSD Data Reduction

Architecture

NBU OST REST API SDFS (Posix) Write Data **Opendedup Volume Service** Read Data **Dedup Storage Engine** Cloud Storage Local Storage

General Cloud Capabilities

- Local Performance Most recently used data can be cached locally
- **Security** All data is locally encrypted with AES-256-CBC before it is sent to the cloud or on disk
- **Data Reduction** All data is deduplicated and compressed before it is sent to the cloud.
- Bandwidth Control Cloud Storage IO can be throttled for upload and download speeds
- **Replication** WAN Efficient Replication between Cloud Storage Gateways
- Glacier, Azure, S3, Google, Swift, block
- Instant Recovery in the cloud or on prem

Steps for Deduplication

- 1. Write to Filesystem
- 2. Incoming Write is cached to buffer
- 3. When buffer is full, times out,or sync variable block chunking occurs
- 4. Chunks compared to hash table
- 5. Unique chunks spooled to blocks of 60MB
- 6. Blocks uploaded to cloud after sync, timeout, or 60 MB

Performance and Scale

- Validated to 260TB of Unique Storage
- At 98% Deduplication rate
 1800 MB/s per CPU (16 Core)
- At 0% Deduplication
 - IO and Network Bound
 - S3 performance observed at 450 MB/s
 - Theoretical Max is 1600 MB/s per CPU (16 Core)

Object Storage is a Great fit for Archive data

- Low Cost Storage
- Built in Replication
- Built in HA
- Infinite Scalability

Cloud Storage Challenge

- Limited WAN Bandwidth to cloud providers
- Storage costs still a concern
- Encryption in public cloud
- HTTP Puts and Gets can get expensive
- Data Retrieval can take time
- No simple way to integrate legacy applications

Today's Solutions

Use deduplication and compression to leverage to cost dynamics of object storage.

1st Generation Gaps

- Does not leverage the resiliency capabilities of Object storage because data is only available in one place at one time.
- Deduplication required finite scalability because of math/physics
 - Hashtable Requires RAM
 - Metadata Requires Local Disk

OpenDedupe

- Shared Instant Access to protected data
- Infinite scalability
- All the same deduplication benefits as a 1st generation target solution

Why OpenDedupe

- Can be leveraged as a storage platform
- Works natively on all form factors and products
 - o **5330/5230**
 - NetBackup Media Server
 - Backup Exec
 - Enterprise Vault
- No Special Hardware Required
 - No SSD
 - No Second Server
- Works with all major Vendors and Tiers
 - Glacier
 - **IA**
 - Azure,S3,Swift,Google

Netbackup Deployment Patterns

NFS Deployment

OpenDedupe Air

- Indirect -> Traditional Replication between data stores
- Direct -> Zero Datamovement Air

Indirect

- Replicate between Object Storage Types
 - On-Prem S3 to Cloud
 - On-Prem S3 to DR S3
 - Azure Amazon

0 ...

Indirect Data Movement Process

Zero Data Movement AIR

- S3 Bucket Shared Between Source and Target NBU Domain
- Source Domain performs backup
- Netbackup AIR Process Initiated
- Target Domain downloads small metadata elements (.2% size of target backup) to perform restore

Zero Data Movement Process

Demo Setup

Backup Clients

Benefits and Use Case

- Benefit Zero Data Movement for DR Consistency
- Use Cases
 - LTR Images Can be removed on Source side and kept on target for LTR
 - Cloud DR Backup datacenter and use Cloud for DR Recovery

Demo Setup

Backup Clients

Clustered Architecture

Truly Shared Storage

- All Media Servers share images
- Global Deduplication
 - All media servers share the same dedup table and storage
 - An image backed up on one media server is deduped against data backed up on another media server
- Any Media Server can restore image in the cloud or on premise regardless:
 - Where they were backed up
 - What media server backed them up

It's all about the Data

- Opendedupe Stores all its data in the object store
 - Hashtable used for local deduplication during writes
 - Unique Block Actual Data Compressed and Encrypted
 - File Metadata Attributes + location of data in object store. Metadata = 2% of the original file before compression.
 - Any file can be read just from its metadata

SDFS as **A** Solution

- Deduplication and Compression
 - Reduces bandwidth
 - Minimizes HTTP Gets and Puts
 - Lower storage footprint
- Local Caching of hot data
 - Reduces bandwidth
 - Minimizes HTTP Gets
 - Increases Read Speeds
 - Data Encryption in flight using AES256 CBC
 - Data is secure at rest
 - Data is secure in transit
- Legacy Integration through Virtual Filesystem Layer
 - Posix
 - NFS
 - ISCSI
 - Windows

General Capabilities

Multi-OS Support

- Linux
- Windows
- Flexibility
 - Designed to support random IO
 - Built in Posix Compliant Filesystem (SDFS)
 - Block Device Support
 - OST support could be added
- Scalability
 - Active instances with 100TB of backend storage per node
 - Multi-Threaded
 - N+1 Node Scale out
- WAN Efficient Replication
 - Granular to File/Folder level
 - Compression
 - Only unique blocks
 - Encrypted and authenticated transport

- Deduplication
 - Inline
 - Fixed Block 4K-128K
 - Variable Block using Rabin border detection
 - Default Murmur3-128 bit hashing
- Storage
 - Built in AES-256 CBC Encryption
 - Block level compression
 - Flexible Storage
 - DAS
 - Cloud
 - Clustered Nodes

Enhanced Cloud Capabilities

- Flexible Storage
 - Azure
 - AWS S3
 - AWS Glacier
 - Google
 - Swift
 - Any S3 compliant backend
- Multi-Threaded Configurable write/read thread throttling
- Configurable upload block size
- Resilient
 - Auto upload restart after crash
 - Hash DB fully recoverable from cloud
 - File Metadata backup recoverable from cloud
- Local active block Caching in MRU capacity
 - Size Configurable local cache pool
 - Stores unique chunks
- Variable Block Performance (Per Cloud Instance CPU)
 - 100% Unique no compression R/W Performance 75-100 MB/s
 - 10% Unique no compression Write Performance 300 MB/s

Architecture

SDFS Data Flow

OST Integration

NetBackup Integration

- Advanced Disk
 - Works on Windows/Linux Media Servers
 - Supports Read/Write
- OST Connector
 - Developed for RHEL 7
 - Supports NBU 7.7+
 - Functions Supported
 - Read
 - Write
 - Accelerator
- Accelerator Performance up to 2000 MB/s

Components

- SDFS Provides FS Emulation
- Volume Service
 - Hashes Data
 - Stores File Metadata
 - Manages Random IO
- Dedup Storage Engine
 - Manages Unique Hash Lookup Table
 - Stores Hash and block reference location
 - Manages backend storage for unique blocks
 - Pluggable storage layer
 - All data is associated to unique hash

Minimum System Requirements

- 300MB of memory per TB of Unique storage
 - 3GB per TB to keep entire hashtable in RAM
 - Assumes average block size is 8KB
- 2.5GB of local storage per TB of Unique Storage Capacity
 - Persist hashtable to disk

Virtual Appliance

Benefits

- Easy to Setup
- ISCSI or NFS
- Built in Replication
- Central Management